A PROOF FOR THE QUASISTEADY METHOD OF
SOLVING THE STEFAN PROBLEM

G. D. Babe and M, A, Kanibolotskii UDC 536.,421.1

The location limit for the interphase boundary is found in the region exterior to a sphere with
a finite radius. It is shown that the solution to the Stefan problem for this region by the meth-
od of quasisteady states approaches the same limitas t—«,

I. Let region G bounded by two concentric spheres with the respective radii Ry and R contain a
solid substance at temperature T,. At the instant of time t = 0 heat is supplied fo the inner sphere so that
a constant temperature T > Ty, is maintained on it. At the same time, heat is removed from the outer
sphere so that the initial temperature Ty < Ty, is maintained here. Obviously, the solid medium ingide
region G will begin to melt and the interphase boundary will be a sphere with the radius £ = {(t, R;). Then

n() =Jmg(, R) M

will be the coordinate of the interphase boundary within the region outside the sphere with radius R,. )
Reaching the limit R, is possible, because at a finite time function 5(t) is bounded and &(t, Rfl)) < &(t, RI(Z )
if Rz(l < Ri(z). We will prove that 5(t) is bounded at t —«~, For this, we must show that there exists a limit

limn(f)=Himlimg ¢, R,) =R &

i
Rl-boo
In order to prove this, we consider the expression

R = lim limE(#, R). (3

Ri»o i+

Let &R)) = }imti(t, R,) represent the steady-state solution to the Stefan problem for region G. It can be

easily obtained by stipulating the steady-state temperature distribution in zones with different phase con-
tents and by using the condition of equal thermal fluxes at the boundarywhen R =£ [1). This yields an
expression for the steady-state boundary é:

RoRy[M (To— Tiy) + Ao (T — Tl
Rody (Tg — T ) + Rida (Tip — T)

E(R)=lmE(, R)= 0

With 4), we have

= M (Tg—Tm)
_ ¢ _ 1+ M g fmd g
R R}l—?l k’rgg( , R) Ru[ + A (To Tu)J 5

We will now show that the limits in {2) and (3) can be switched around, i.e., that R exists and R = E
For this we must show [2] that £(t, R,) converges uniformly at least with respect to one variable. We con-
sider the family of functions {&,(t) }:

L) =8l R(1+mln=1,2, ... (6)

Functions §,(t) have the following properties:
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1) §,(t) increases monotonically;

2) at any fixed time t*

£, (1) <Eppr (8%); M
3) d&,(t)/dt decreases monotonically;
4) at any fixed time t* > 0
dg, ()
-1 N, 8
TR (8

where N is a number of independent of n,

Properties 1)-4) follow from the most general energy concepts. From the first two, in turn, and
from (5) follows the uniform boundedness of the family of functions {‘g’n(t) }, while from the last two fol -
lows the equidegree continuity of the family of functions {En(t)} on any interval [t* > 0, ). Consequently,
the family of functions {gn(t)} satisfies Arzela's theorem [4]. Arzela's theorem and (7) prove the uniform
convergence of the family of functions {&n(t)} on any interval [t* > 0, «),

Consequently,
- = by (To—Tm)
R=R=R[l+—‘——~———]- ©)
’ by (T —To)
If Ay =A,, then
- To—Tm
R—R ( 1+ —————) (10)
’ T, —To

One can also arrive at (10) considering the limit location of the Ty, isotherm isotherm in the problem with-
out phase transition.

Thus, in the Stefan problem with center symmetry, within the region exterior to a sphere with the
radius R, there is a limit for the location of the interphase boundary as f{ — « and this limit is equal to ex-
pression (9).

II. We will now consider the solution to the Stefan problem for the region exterior to a sphere with
the radius Ry and will use here the method of quasisteady states [1]. The initial and the boundary con-
ditions are the same as in 9I. According to [1], the temperatures in the zones with different phase con-
tents are specified in the form:

Tl(t’ r):TG_l_?‘_G—__&l(_R_"_._l)n; R0<r<n, ]

R ! (11
Tt =T+ =T e[ 720 1o sy |

r 2]'%2t J

The differential equation describing the movement of the interphase boundary will be obtained from the
Stefan condition at the boundary:

oT, | T, dn
=2l —A L =Lp,—. 12
e S " (12)
Inserting (11) into (12) yields
dy A B C
= i (0)=R, (13)
d¢  nm—Ry) vVt °
where
Lo, Lo, Lo,y mun,
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We rewrite (13) as

dn _ Ayt —B@—R)1 {—Cn(n—Ry)
dt nm—Ry)r ¢

3 N0) =R, - (15)

It can be shown that the solution 7(t) to this nonlinear differential equation, with the given initial condition,
will be a monotonically increasing function. It appears from (15), however, that, in order to satisfy the
condition dn/dt > 0 at any instant of time, function 7(t) must be upper bounded, i.e., n(t) must have a
limit ag t — «, This limit will be found by letting the time approach infinity on the right-hand side of Eq,
(15) and by making use of (14):

I+

S A M (Tg—Tm)
R=Ilimn(f)=Ry+ — =R,| 1 - L6 __-ml|
() 0 B o[ T, (T, —To)] (16)
Expression (16) obtained by the method of quasisteady states is the same as expression (9) obtained
in the exact formulation. Consequently, the method of quasisteady states is an asymptotically stable one.

We note, in conclusion, that our results remains valid also for a boundary condition of the third
kind and the limit location of the interphase boundary will be the same as for a boundary condition of the
first kind, Furthermore, these results can be extended to the case where the temperature at the boundary
is a function of time with a bounded asymptote I‘im Tgt) =Tg > Ty

NOTATION

is the time;
is the radial coordinate;
is the temperature;
m is the melting point;
is the thermal conductivity;
is the thermal diffusivity;
is the density;
is the specific heat;
is the latent heat of melting.

HOoOT X >3 3"

Subscripts

1 denotes the liquid phase;
2 denotes the solid phase.
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