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The location l imit  for  the interphase boundary is found in the region ex te r io r  to a sphere  with 
a finite radius.  It is shown that the solution to the Stefan problem for this region by the meth-  
od of quasis teady states  approaches the sam e l imi t  as t ~ 

I. Le t  region G bounded by two concentr ic  spheres  with the respec t ive  radii  R 0 and R 1 contain a 
solid substance at  t empera tu re  T 0. At the instant of t ime t = 0 heat  is supplied to the inner sphere  so that 
a constant t e m pe ra tu r e  T G > T m is maintained on it. At the same t ime,  heat  is r emoved  f rom the outer  
sphere  so that the initial t empera tu re  T O < T m is maintained here .  Obviously, the solid medium inside 
region G will begin to mel t  and the interphase boundary will be a sphere  with the radius ~ = ~(t, R1). Then 

(t) (t, ,%) 

will be the coordinate  of the interphase boundary within the region outside the sphere  with radius R 0. 2 
Reap.hing the l imi t  R 1 is possible ,  because  at a finite t ime function ~(t) is bounded and ~(t, R~ 1)) < ~(t, R~ )) 
if R~ t) < R} 2). We will prove that rl(t) is bounded at  t ~ ,  F o r  this ,  we must  show that there  exists  a l imi t  

lira n(t) = lira lira g (t, R,) = R. (2) 

In o rde r  to prove this,  we consider  the express ion  

= tim lima(t, R~). (3) 

Le t  ~R t) = lim~(t,  R t) r ep r e sen t  the s teady-s ta te  solution to the Stefan problem for  region G. It can be 
t - ~  

eas i ly  obtained by stipulating the s t eady-s ta te  t empera tu re  distr ibution in zones w ith different  phase con- 
tents  and by using the condition of equal thermal  fluxes at the boundary w hen R = ~ [1]. This yields an 
express  ion for the s teady-s ta te  boundary ~: 

(R~) = lira ~ (t, R~) = RoRa[~l (TG--  Trn.) + ~ (Tin --  T,)] (4) 
' "  ~ Ro~,  ( r  G - -  Tin.) + R ~  (rm - -  To) 

With (4), we have 

= lira lira ~ (t, Rx)=Ro [ 1 + ~'' -(TG - -  Tin! 1. (5) 

We wilt now show that the l imi ts  in (2) and (3) can be switched around,  i .e. ,  that R exists  and R = R. 
Fo r  this we must  show [2] that ~(t, R l) converges  uniformly at  l e a s t  with r e spec t  to one var iable .  We con-  
s ider  the family of functions {~n(t)}: 

~( t )  =~[ t ,  Ro(1-}- n)]; n -  1, 2 . . . .  (6) 

Functions ~n(t) have the following proper t i es :  
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I) Sn(t) increases  monotonically;  

2) at  any fixed t ime t*  

~n (t*) < ~+,  q*); (7) 

3) d~n(t)/dt dec r ea se s  monotonically; 

4) at  any fixed t ime t* > 0 

d ~  (t*) < N, 
dt 

(8) 

where  N is a number  of independent of n. 

P r ope r t i e s  1)-4) follow from the most  general  energy concepts.  F rom the f i r s t  two, in turn,  and 
f rom (5) follows the uniform boundedness of the family of functions {~n(t)j ,  while f rom the las t  two fol-  
lows the equidegree continuity of the family of functions {~n(t)} on any interval  it* > 0, oo). Consequently,  
the family of functions {~n(t)} sa t isf ies  Arze la ' s  t heorem [4]. Arze la ' s  theorem and (7) prove the uniform 
convergence of the family of functions {~n(t)} on any interval  it* > 0, o~). 

Cons equently, 

Z, (To_--I'm) ] 
= ~ = R o  1 + k= (Tm--To)J"  

(9) 

If X l = X2, then 

TG--Tm 
~ = R o ( l +  Tm__T0 ) .  (10) 

One can also a r r i ve  at (10) consider ing the l imit  location of the T m isotherm isotherm in the problem with-  
out phase t ransi t ion.  

Thus,  in the Stefan problem with center  symmet ry ,  within the region ex te r io r  to a sphere  with the 
radius R 0 the re  is a l imit  for the location of the interphase boundary as t ~ r162 and this l imi t  is equal to ex-  
p re s s  ion (9). 

II. We will now consider  the solution to the Stefan problem for  the region ex te r ior  to a sphere  with 
the radius R 0 and will use he re  the method of quasis teady states  [1]. The initial and the boundary con-  
ditions are  the same as in �82 I. According to [1], t h e  t empera tu res  in the zones with different  phase con-  
tents  a re  specif ied in the form: 

Tz(t, r)= Tc § T6-Tm ( Ro _ l ) ~ l ; R o < r ~ l ,  ] 
~1 - -  Ro r I 

T~(t, r ) = T  O ~ ~lerfc �9 r>~l.  I 
r 277~-? - ' j 

(ii) 

The differential  equation descr ibing the movement  of the interphase boundary will be obtained f rom the 
Stefan condition at the boundary: 

~20T~ f OT 1 [ d~l (12) 

Inser t ing (11) into (12) yields 

d~l A B C . 
TI 01 --Ro) ~l V T '  rl (0) = Ro, (13) 

where  

A = Ll(TG--Trn)Rt; B= L~(Tm--T~ ; C ~,z(Tm--To). (14) 
Lp.~ LP2 LP2 ~/~• 
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We rewr i t e  (13) as  

d__~_~= A,  F--B(U--Ro)~ F--C~(u--Ro) ; ~(0)=Ro.. (15) 
at 11 (TI - -  Ro) ~, F 

It can be shown that  the solution ~(t) to this nonl inear  different ia l  equation, with the given initial condition, 
will be a monotonical ly  inc reas ing  function. It appears  f rom (15), however ,  that,  in o rde r  to sa t i s fy  the 
condition d ~ / d t  > 0 at any instant of t ime ,  functton ~(t) must  be upper bounded, i .e. ,  ~(t) must  have a 
l imi t  as t ~ 0% This  l imi t  will be found by let t ing the t ime  approach  infinity on the r ight -hand side of Eq. 
(15) and by making use of (14): 

R - - - l i m ~ l ( ' ) = R o +  A = R o [  1 -~ (TG--TTm)]. (16) 
t~| B ~'2 (Tin - -  To) 

Expres s ion  (16) obtained by the method of quas is teady s ta tes  is the s ame  as express ion  (9) obtained 
in the exact  formulat ion.  Consequently,  the method of quas is teady s ta tes  is an asympto t ica l ly  stable one. 

We note,  in conclusion,  that our resu l t s  r ema ins  valid a lso  for  a boundary condition of the third 
kind and the l imi t  location of the in terphase  boundary will be the same  as for a boundary condition of the 
f i r s t  kind. F u r t h e r m o r e ,  these r e su l t s  can be extended to the case  where  the t e m p e r a t u r e  at the boundary 
is a function of t ime  with a bounded asympto te  lira TG(t) = T G > T m. 

N O T A T I O N  

t is the t ime;  
r is the radia l  coordinate;  
T is the t empera tu re ;  
T m is the mel t ing point; 
X is the t he rm a l  conductivity; 
x is the t he rm a l  diffusivity;  
p is the density;  
c is the speci f ic  heat;  
L is the la tent  heat  of melting. 

S u b s c r i p t s  

1 denotes the liquid phase;  
2 denotes the solid phase .  
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